I2S Masters/ Doctoral Theses


All students and faculty are welcome to attend the final defense of I2S graduate students completing their M.S. or Ph.D. degrees. Defense notices for M.S./Ph.D. presentations for this year and several previous years are listed below in reverse chronological order.

Students who are nearing the completion of their M.S./Ph.D. research should schedule their final defenses through the EECS graduate office at least THREE WEEKS PRIOR to their presentation date so that there is time to complete the degree requirements check, and post the presentation announcement online.

Upcoming Defense Notices

Arman Ghasemi

Task-Oriented Communication and Distributed Control in Smart Grids with Time-Series Forecasting

When & Where:


Nichols Hall, Room 246

Degree Type:

PhD Comprehensive Defense

Committee Members:

Morteza Hashemi, Chair
Alex Bardas
Taejoon Kim
Prasad Kulkarni
Zsolt Talata

Abstract

Smart grids face challenges in maintaining the balance between generation and consumption at the residential and grid scales with the integration of renewable energy resources. Decentralized, dynamic, and distributed control algorithms are necessary for smart grids to function effectively. The inherent variability and uncertainty of renewables, especially wind and solar energy, complicate the deployment of distributed control algorithms in smart grids. In addition, smart grid systems must handle real-time data collected from interconnected devices and sensors while maintaining reliable and secure communication regardless of network failures. To address these challenges, our research models the integration of renewable energy resources into the smart grid and evaluates how predictive analytics can improve distributed control and energy management, while recognizing the limitations of communication channels and networks.

In the first thrust of this research, we develop a model of a smart grid with renewable energy integration and evaluate how forecasting affects distributed control and energy management. In particular, we investigate how contextual weather information and renewable energy time-series forecasting affect smart grid energy management. In addition to modeling the smart grid system and integrating renewable energy resources, we further explore the use of deep learning methods, such as the Long Short-Term Memory (LSTM) and Transformer models, for time-series forecasting. Time-series forecasting techniques are applied within Reinforcement Learning (RL) frameworks to enhance decision-making processes.

In the second thrust, we note that data collection and sharing across the smart grids require considering the impact of network and communication channel limitations in our forecasting models. As renewable energy sources and advanced sensors are integrated into smart grids, communication channels on wireless networks are overflowed with data, requiring a shift from transmitting raw data to processing only useful information to maximize efficiency and reliability. To this end, we develop a task-oriented communication model that integrates data compression and the effects of data packet queuing with considering limitation of communication channels, within a remote time-series forecasting framework. Furthermore, we jointly integrate data compression technique with age of information metric to enhance both relevance and timeliness of data used in time-series forecasting.


Neel Patel

Near-Memory Acceleration of Compressed Far Memory

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Degree Type:

MS Thesis Defense

Committee Members:

Mohammad Allan, Chair
David Johnson
Prasad Kulkarni


Abstract

DRAM constitutes over 50% of server cost and 75% of the embodied carbon footprint of a server. To mitigate DRAM cost, far memory architectures have emerged. They can be separated into two broad categories: software-defined far memory (SFM) and disaggregated far memory (DFM). In this work, we compare the cost of SFM and DFM in terms of their required capital investment, operational expense, and carbon footprint. We show that, for applications whose data sets are compressible and have predictable memory access patterns, it takes several years for a DFM to break even with an equivalent capacity SFM in terms of cost and sustainability. We then introduce XFM, a near-memory accelerated SFM architecture, which exploits the coldness of data during SFM-initiated swap ins and outs. XFM leverages refresh cycles to seamlessly switch the access control of DRAM between the CPU and near-memory accelerator. XFM parallelizes near-memory accelerator accesses with row refreshes and removes the memory interference caused by SFM swap ins and outs.

We modify an open source far memory implementation to implement a full-stack, user-level XFM. Our experimental results use a combination of an FPGA implementation, simulation, and analytical modeling to show that XFM eliminates memory bandwidth utilization when performing compression and decompression operations with SFMs of capacities up to 1TB. The memory and cache utilization reductions translate to 5∼27% improvement in the combined performance of co-running applications.


Durga Venkata Suraj Tedla

Block chain based inter organization file sharing system

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Project Defense

Committee Members:

David Johnson, Chair
Drew Davidson
Sankha Guria


Abstract

A coalition of companies collaborates collectively and shares information to improve their operations together. Distributed trust and transparency cannot be obtained with centralized file-sharing platforms. File sharing may be done transparently and securely with blockchain technology. This project suggests an inter-organizational secure file-sharing system based on blockchain technology. The group can use it to securely share files in a distributed manner. The creation of smart contracts and the configuration of blockchain networks are carried out by Hyperledger Fabric, an enterprise blockchain platform. Distributed file storage is accomplished through the usage of the Inter Planetary File System (IPFS).

The workflow for file-sharing and identity management procedures is provided in the paper. Using blockchain technology, the recommended approach enables a group of businesses to share files with availability, integrity, and confidentiality. The suggested method uses blockchain to enable safe file exchange amongst a group of enterprises. It offers shared file availability, confidentiality, and integrity. It guarantees complete file encryption. The blockchain provides tamper-resistant storage for the shared file's content ID. On the distributed storage and blockchain ledger, respectively, the encrypted file and file metadata are stored.


Sai Narendra Koganti

Object Detection

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Degree Type:

MS Project Defense

Committee Members:

Sumaiya Shomaji, Chair
David Johnson
Prasad Kulkarni


Abstract

This project offers a hands-on investigation of object identification utilizing the YOLO method, Python, and OpenCV. It begins by explaining the YOLO architecture, focusing on the single-stage detection process for bounding box prediction and class probability calculation. The setup phase includes library installation and model configuration, resulting in a smooth implementation procedure. Using OpenCV, the project includes preparatory processes required for object detection in images. The YOLO model is seamlessly integrated into the OpenCV framework, enabling object detection. Post-processing techniques, such as non-maximum suppression, are used to modify detection results and improve accuracy. Visualizations, such as bounding boxes and labels, are used to help interpret the discovered items. The project finishes by investigating potential expansions and optimizations, such as custom dataset training and deployment on edge devices, opening up new paths for further investigation and development. This project provides developers with the tools and knowledge they need to build effective object detection systems for a wide range of applications, from surveillance and security to autonomous vehicles and augmented reality.


Vijay Verma

Binary Segmentation of PCB Components Using U-Net Model

When & Where:


Zoom Meeting

Degree Type:

MS Project Defense

Committee Members:

Sumaiya Shomaji, Chair
Tamzidul Hoque
Zijun Yao


Abstract

This project explores the adaptation of the U-Net convolutional neural network, renowned for its medical image segmentation prowess, to the analysis of Printed Circuit Boards (PCBs). By utilizing the Fine-Printed Circuit Board Image Collection (FPIC) dataset, we address key challenges in PCB inspection, such as the precise segmentation of complex components, handling class imbalances, and capturing minute details.

The U-Net model has been finely tuned with an encoding-decoding architecture, enhanced by convolutional layers, batch normalization, and dropout techniques to extract and reconstruct high-quality features from PCB images effectively. The Dice coefficient, used as the loss function, significantly improves boundary accuracy, and manages class diversity. Throughout extensive training and validation phases, the model has demonstrated superior performance metrics compared to traditional methods, making substantial advancements in automated PCB inspection.

During the rigorous training and validation stages, the U-Net model demonstrated excellent performance metrics, eclipsing traditional inspection methods. For capacitors, the model achieved a training accuracy of 95.03% and a validation accuracy of 95.92%. For resistors, training using transfer learning techniques resulted in even more remarkable performance, with training accuracy reaching 98% and validation accuracy hitting 98.23%. These metrics highlight the model's robustness and accuracy, marking a significant advancement in automated PCB inspection and suggesting the model's potential for wider industrial applications in multiclass component segmentation within complex PCB.


Ruturaj Vaidya

Exploring binary analysis techniques for security

When & Where:


Zoom

Degree Type:

PhD Dissertation Defense

Committee Members:

Prasad Kulkarni, Chair
Alex Bardas
Drew Davidson
Esam El-Araby
Michael Vitevitch

Abstract

In this dissertation our goal is to evaluate how the loss of information at binary-level affects the performance of existing compiler-level techniques in terms of both efficiency and effectiveness. Binary analysis is difficult, as most of semantic and syntactic information available at source-level gets lost during the compilation process. If the binary is stripped and/ or optimized, then it negatively affects the efficacy of binary analysis frameworks. Moreover, handwritten assembly, obfuscation, excessive indirect calls or jumps, etc. further degrade the accuracy of binary analysis. Challenges to precise binary analysis have implications on the effectiveness, accuracy, and performance, of security and program hardening techniques implemented at the binary level. While these challenges are well-known, their respective impacts on the effectiveness and performance of program hardening techniques are less well-studied.

In this dissertation, we employ classes of defense mechanisms to protect software from the most common software attacks, like buffer overflows and control flow attacks, to determine how this loss of program information at the binary-level affects the effectiveness and performance of defense mechanisms. Additionally, we aim to tackle an important problem of type recovery from binary executables that in turn help bolster the software protection mechanisms.


Jianpeng Li

BlackLitNetwork: Advancing Black Literature Discovery Through Modern Web Technologies

When & Where:


LEEP2, Room 1420

Degree Type:

MS Project Defense

Committee Members:

Drew Davidson, Chair
Sumaiya Shomaji
Han Wang


Abstract

Advancements in web technologies have significantly expanded access to diverse cultural narratives, yet black literature remains underrepresented in digital domains. The BlackLitNetwork addresses this oversight by harnessing Elasticsearch, MongoDB, React, Python, CSS, HTML, and Node.js, to enhance the discoverability and engagement with black novels. A major component of the platform is a novel generator built with Elasticsearch, which employs powerful full-text search capabilities, essential for users to navigate an extensive literary database effectively.

MongoDB supports the archives platform with a flexible data schema for managing varied literary content efficiently, while Python facilitates robust data cleaning and preprocessing to ensure data integrity and usability. The user interface, created using React, transforms Figma designs from our design team into a dynamic web presence, integrating HTML and CSS to ensure both aesthetic appeal and accessibility.

To further enhance security and manageability, we've implemented a Node.js backend. This layer acts as a middleware, managing and processing requests between our frontend and Elasticsearch. This not only secures our data interactions but also allows for request handling before querying Elasticsearch. This architecture ensures that BlackLitNetwork remains scalable and maintainable.

BlackLitNetwork also features specialized pages for podcasts, briefs, and interactive data visualizations, each designed to highlight historical, and contextual elements of black literature. These components aid in fostering a deeper understanding, establishing BlackLitNetwork as a tool for scholars. This project not only enriches the field of humanities but also promotes a broader understanding of the black literary heritage, making it a resource for researchers, educators, and readers keen on exploring the richness of black literature.


Thomas Atkins

Secure and Auditable Academic Collections via Hyperledger Fabric-Based Smart Contracts

When & Where:


Nichols Hall, Room 246

Degree Type:

MS Thesis Defense

Committee Members:

Drew Davidson, Chair
Fengjun Li
Bo Luo


Abstract

This paper introduces a novel approach to manage collections of artifacts through smart contract access control, rooted in on-chain role-based property-level access control. This smart contract facilitates the lifecycle of these artifacts including allowing for the creation, modification, removal, and historical auditing of the artifacts through both direct and suggested actions. This method introduces a collection object designed to store role privileges concerning state object properties. User roles are defined within an on-chain entity that maps users' signed identities to roles across different collections, enabling a single user to assume varying roles in distinct collections.

Unlike existing key-level endorsement mechanisms, this approach offers finer-grained privileges by defining them on a per-property basis, not at the key level. The outcome is a more flexible and fine-grained access control system seamlessly integrated into the smart contract itself, empowering administrators to manage access with precision and adaptability across diverse organizational contexts. This has the added benefit of allowing for the auditing of not only the history of the artifacts, but also for the permissions granted to the users. 


Ethan Grantz

Swarm: A Backend-Agnostic Language for Simple Distributed Programming

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Degree Type:

MS Project Defense

Committee Members:

Drew Davidson, Chair
Perry Alexander
Prasad Kulkarni


Abstract

Writing algorithms for a parallel or distributed environment has always been plagued with a variety of challenges, from supervising synchronous reads and writes, to managing job queues and avoiding deadlock. While many languages have libraries or language constructs to mitigate these obstacles, very few attempt to remove those challenges entirely, and even fewer do so while divorcing the means of handling those problems from the means of parallelization or distribution. This project introduces a language called Swarm, which attempts to do just that.

Swarm is a first-class parallel/distributed programming language with modular, swappable parallel drivers. It is intended for everything from multi-threaded local computation on a single machine to large scientific computations split across many nodes in a cluster.

Swarm contains next to no explicit syntax for typical parallel logic, only containing keywords for declaring which variables should reside in shared memory, and describing what code should be parallelized. The remainder of the logic (such as waiting for the results from distributed jobs or locking shared accesses) are added in when compiling to a custom bytecode called Swarm Virtual Instructions (SVI). SVI is then executed by a virtual machine whose parallelization logic is abstracted out, such that the same SVI bytecode can be executed in any parallel/distributed environment.


Johnson Umeike

Optimizing gem5 Simulator Performance: Profiling Insights and Userspace Networking Enhancements

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Degree Type:

MS Thesis Defense

Committee Members:

Mohammad Alian, Chair
Prasad Kulkarni
Heechul Yun


Abstract

Full-system simulation of computer systems is critical for capturing the complex interplay between various hardware and software components in future systems. Modeling the network subsystem is indispensable for the fidelity of full-system simulations due to the increasing importance of scale-out systems. Over the last decade, the network software stack has undergone major changes, with userspace networking stacks and data-plane networks rapidly replacing the conventional kernel network stack. Nevertheless, the current state-of-the-art architectural simulator, gem5, still employs kernel networking, which precludes realistic network application scenarios.

First, we perform a comprehensive profiling study to identify and propose architectural optimizations to accelerate a state-of-the-art architectural simulator. We choose gem5 as the representative architectural simulator, run several simulations with various configurations, perform a detailed architectural analysis of the gem5 source code on different server platforms, tune both system and architectural settings for running simulations, and discuss the future opportunities in accelerating gem5 as an important application. Our detailed profiling of gem5 reveals that its performance is extremely sensitive to the size of the L1 cache. Our experimental results show that a RISC-V core with 32KB data and instruction cache improves gem5’s simulation speed by 31%∼61% compared with a baseline core with 8KB L1 caches. Second, this work extends gem5’s networking capabilities by integrating kernel-bypass/user-space networking based on the DPDK framework, significantly enhancing network throughput and reducing latency. By enabling user-space networking, the simulator achieves a substantial 6.3× improvement in network bandwidth compared to traditional Linux software stacks. Our hardware packet generator model (EtherLoadGen) provides up to a 2.1× speedup in simulation time. Additionally, we develop a suite of networking micro-benchmarks for stress testing the host network stack, allowing for efficient evaluation of gem5’s performance. Through detailed experimental analysis, we characterize the performance differences when running the DPDK network stack on both real systems and gem5, highlighting the sensitivity of DPDK performance to various system and microarchitecture parameters.


Adam Sarhage

Design of Multi-Section Coupled Line Coupler

When & Where:


Eaton Hall, Room 2001B

Degree Type:

MS Project Defense

Committee Members:

Jim Stiles, Chair
Chris Allen
Glenn Prescott


Abstract

Coupled line couplers are used as directional couplers to enable measurement of forward and reverse power in RF transmitters. These measurements provide valuable feedback to the control loops regulating transmitter power output levels. This project seeks to synthesize, simulate, build, and test a broadband, five-stage coupled line coupler with a 20 dB coupling factor. The coupler synthesis is evaluated against ideal coupler components in Keysight ADS.  Fabrication of coupled line couplers is typically accomplished with a stripline topology, but a microstrip topology is additionally evaluated. Measurements from the fabricated coupled line couplers are then compared to the Keysight ADS EM simulations, and some explanations for the differences are provided. Additionally, measurements from a commercially available broadband directional coupler are provided to show what can be accomplished with the right budget.


Mohsen Nayebi Kerdabadi

Contrastive Learning of Temporal Distinctiveness for Survival Analysis in Electronic Health Records

When & Where:


Nichols Hall, Room 250 (Gemini Room)

Degree Type:

MS Project Defense

Committee Members:

Zijun Yao, Chair
Fengjun Li
Cuncong Zhong


Abstract

Survival analysis plays a crucial role in many healthcare decisions, where the risk prediction for the events of interest can support an informative outlook for a patient's medical journey. Given the existence of data censoring, an effective way of survival analysis is to enforce the pairwise temporal concordance between censored and observed data, aiming to utilize the time interval before censoring as partially observed time-to-event labels for supervised learning. Although existing studies mostly employed ranking methods to pursue an ordering objective, contrastive methods which learn a discriminative embedding by having data contrast against each other, have not been explored thoroughly for survival analysis. Therefore, we propose a novel Ontology-aware Temporality-based Contrastive Survival (OTCSurv) analysis framework that utilizes survival durations from both censored and observed data to define temporal distinctiveness and construct negative sample pairs with adjustable hardness for contrastive learning. Specifically, we first use an ontological encoder and a sequential self-attention encoder to represent the longitudinal EHR data with rich contexts. Second, we design a temporal contrastive loss to capture varying survival durations in a supervised setting through a hardness-aware negative sampling mechanism. Last, we incorporate the contrastive task into the time-to-event predictive task with multiple loss components. We conduct extensive experiments using a large EHR dataset to forecast the risk of hospitalized patients who are in danger of developing acute kidney injury (AKI), a critical and urgent medical condition. The effectiveness and explainability of the proposed model are validated through comprehensive quantitative and qualitative studies.


Jarrett Zeliff

An Analysis of Bluetooth Mesh Security Features in the Context of Secure Communications

When & Where:


Eaton Hall, Room 1

Degree Type:

MS Thesis Defense

Committee Members:

Alexadnru Bardas, Chair
Drew Davidson
Fengjun Li


Abstract

Significant developments in communication methods to help support at-risk populations have increased over the last 10 years. We view at-risk populations as a group of people present in environments where the use of infrastructure or electricity, including telecommunications, is censored and/or dangerous. Security features that accompany these communication mechanisms are essential to protect the confidentiality of its user base and the integrity and availability of the communication network.

In this work, we look at the feasibility of using Bluetooth Mesh as a communication network and analyze the security features that are inherent to the protocol. Through this analysis we determine the strengths and weaknesses of Bluetooth Mesh security features when used as a messaging medium for at risk populations and provide improvements to current shortcomings. Our analysis includes looking at the Bluetooth Mesh Networking Security Fundamentals as described by the Bluetooth Sig: Encryption and Authentication, Separation of Concerns, Area isolation, Key Refresh, Message Obfuscation, Replay Attack Protection, Trashcan Attack Protection, and Secure Device Provisioning.  We look at how each security feature is implemented and determine if these implementations are sufficient in protecting the users from various attack vectors. For example, we examined the Blue Mirror attack, a reflection attack during the provisioning process which leads to the compromise of network keys, while also assessing the under-researched key refresh mechanism. We propose a mechanism to address Blue-Mirror-oriented attacks with the goal of creating a more secure provisioning process.  To analyze the key refresh mechanism, we implemented our own full-fledged Bluetooth Mesh network and implemented a key refresh mechanism. Through this we form an assessment of the throughput, range, and impacts of a key refresh in both lab and field environments that demonstrate the suitability of our solution as a secure communication method.


Daniel Johnson

Probability-Aware Selective Protection for Sparse Iterative Solvers

When & Where:


Nichols Hall, Room 246

Degree Type:

MS Thesis Defense

Committee Members:

Hongyang Sun, Chair
Perry Alexander
Zijun Yao


Abstract

With the increasing scale of high-performance computing (HPC) systems, transient bit-flip errors are now more likely than ever, posing a threat to long-running scientific applications. A substantial portion of these applications involve the simulation of partial differential equations (PDEs) modeling physical processes over discretized spatial and temporal domains, with some requiring the solving of sparse linear systems. While these applications are often paired with system-level application-agnostic resilience techniques such as checkpointing and replication, the utilization of these techniques imposes significant overhead. In this work, we present a probability-aware framework that produces low-overhead selective protection schemes for the widely used Preconditioned Conjugate Gradient (PCG) method, whose performance can heavily degrade due to error propagation through the sparse matrix-vector multiplication (SpMV) operation. Through the use of a straightforward mathematical model and an optimized machine learning model, our selective protection schemes incorporate error probability to protect only certain crucial operations. An experimental evaluation using 15 matrices from the SuiteSparse Matrix Collection demonstrates that our protection schemes effectively reduce resilience overheads, often outperforming or matching both baseline and established protection schemes across all error probabilities.


Javaria Ahmad

Discovering Privacy Compliance Issues in IoT Apps and Alexa Skills Using AI and Presenting a Mechanism for Enforcing Privacy Compliance

When & Where:


LEEP2, Room 2425

Degree Type:

PhD Dissertation Defense

Committee Members:

Bo Luo, Chair
Alex Bardas
Tamzidul Hoque
Fengjun Li
Michael Zhuo Wang

Abstract

The growth of IoT and voice assistant (VA) apps poses increasing concerns about sensitive data leaks. While privacy policies are required to describe how these apps use private user data (i.e., data practice), problems such as missing, inaccurate, and inconsistent policies have been repeatedly reported. Therefore, it is important to assess the actual data practice in apps and identify the potential gaps between the actual and declared data usage. We find that app stores lack in regulating the compliance between the app practices and their declaration, so we use AI to discover the compliance issues in these apps to assist the regulators and developers. For VA apps, we also develop a mechanism to enforce the compliance using AI. In this work, we conduct a measurement study using our framework called IoTPrivComp, which applies an automated analysis of IoT apps’ code and privacy policies to identify compliance gaps. We collect 1,489 IoT apps with English privacy policies from the Play Store. IoTPrivComp detects 532 apps with sensitive external data flows, among which 408 (76.7%) apps have undisclosed data leaks. Moreover, 63.4% of the data flows that involve health and wellness data are inconsistent with the practices disclosed in the apps’ privacy policies. Next, we focus on the compliance issues in skills. VAs, such as Amazon Alexa, are integrated with numerous devices in homes and cars to process user requests using apps called skills. With their growing popularity, VAs also pose serious privacy concerns. Sensitive user data captured by VAs may be transmitted to third-party skills without users’ consent or knowledge about how their data is processed. Privacy policies are a standard medium to inform the users of the data practices performed by the skills. However, privacy policy compliance verification of such skills is challenging, since the source code is controlled by the skill developers, who can make arbitrary changes to the behaviors of the skill without being audited; hence, conventional defense mechanisms using static/dynamic code analysis can be easily escaped. We present Eunomia, the first real-time privacy compliance firewall for Alexa Skills. As the skills interact with the users, Eunomia monitors their actions by hijacking and examining the communications from the skills to the users, and validates them against the published privacy policies that are parsed using a BERT-based policy analysis module. When non-compliant skill behaviors are detected, Eunomia stops the interaction and warns the user. We evaluate Eunomia with 55,898 skills on Amazon skills store to demonstrate its effectiveness and to provide a privacy compliance landscape of Alexa skills.


Past Defense Notices

Dates

Xiangyu Chen

Toward Efficient Deep Learning for Computer Vision Applications

When & Where:


Nichols Hall, Room 246

Degree Type:

PhD Dissertation Defense

Committee Members:

Cuncong Zhong, Chair
Prasad Kulkarni
Bo Luo
Fengjun Li
Honguo Xu

Abstract

Deep learning leads the performance in many areas of computer vision. However, after a decade of research, it tends to require larger datasets and more complex models, leading to heightened resource consumption across all fronts. Regrettably, meeting these requirements proves challenging in many real-life scenarios. First, both data collection and labeling processes entail substantial labor and time investments. This challenge becomes especially pronounced in domains such as medicine, where identifying rare diseases demands meticulous data curation. Secondly, the large size of state-of-the-art models, such as ViT, Stable Diffusion, and ConvNext, hinders their deployment on resource-constrained platforms like mobile devices. Research indicates pervasive redundancies within current neural network structures, exacerbating the issue. Lastly, even with ample datasets and optimized models, the time required for training and inference remains prohibitive in certain contexts. Consequently, there is a burgeoning interest among researchers in exploring avenues for efficient artificial intelligence.

This study endeavors to delve into various facets of efficiency within computer vision, including data efficiency, model efficiency, as well as training and inference efficiency. The data efficiency is improved from the perspective of increasing information brought by given image inputs and reducing redundancies of RGB image formats. To achieve this, we propose to integrate both spatial and frequency representations to finetune the classifier. Additionally, we propose explicitly increasing the input information density in the frequency domain by deleting unimportant frequency channels. For model efficiency, we scrutinize the redundancies present in widely used vision transformers. Our investigation reveals that trivial attention in their attention modules covers useful non-trivial attention due to its large amount. We propose mitigating the impact of accumulated trivial attention weights. To increase training efficiency, we propose SuperLoRA, a generation of LoRA adapter, to fine-tune pretrained models with few iterations and extremely-low parameters. Finally, a model simplification pipeline is proposed to further reduce inference time on mobile devices. By addressing these challenges, we aim to advance the practicality and performance of computer vision systems in real-world applications.


Grace Young

Quantum Polynomial-Time Reduction for the Dihedral Hidden Subgroup Problem

When & Where:


Nichols Hall, Room 246

Degree Type:

PhD Dissertation Defense

Committee Members:

Perry Alexander, Chair
Esam El-Araby
Matthew Moore
Cuncong Zhong
KC Kong

Abstract

The last century has seen incredible growth in the field of quantum computing. Quantum computation offers the opportunity to find efficient solutions to certain computational problems which are intractable on classical computers. One class of problems that seems to benefit from quantum computing is the Hidden Subgroup Problem (HSP). The HSP includes, as special cases, the problems of integer factoring, discrete logarithm, shortest vector, and subset sum - making the HSP incredibly important in various fields of research.                               

The presented research examines the HSP for Dihedral groups with order 2^n and proves a quantum polynomial-time reduction to the so-called Codomain Fiber Intersection Problem (CFIP). The usual approach to the HSP relies on harmonic analysis in the domain of the problem and the best-known algorithm using this approach is sub-exponential, but still super-polynomial. The algorithm we will present deviates from the usual approach by focusing on the structure encoded in the codomain and uses this structure to direct a “walk” down the subgroup lattice terminating at the hidden subgroup.                               

Though the algorithm presented here is specifically designed for the DHSP, it has potential applications to many other types of the HSP. It is hypothesized that any group with a sufficiently structured subgroup lattice could benefit from the analysis developed here. As this approach diverges from the standard approach to the HSP it could be a promising step in finding an efficient solution to this problem.


Daniel Herr

Information Theoretic Physical Waveform Design with Application to Waveform-Diverse Adaptive-on-Transmit Radar

When & Where:


Nichols Hall, Room 246

Degree Type:

PhD Comprehensive Defense

Committee Members:

James Stiles, Chair
Chris Allen
Shannon Blunt
Carl Leuschen
Chris Depcik

Abstract

Information theory provides methods for quantifying the information content of observed signals and has found application in the radar sensing space for many years. Here, we examine a type of information derived from Fisher information known as Marginal Fisher Information (MFI) and investigate its use to design pulse-agile waveforms. By maximizing this form of information, the expected error covariance about an estimation parameter space may be minimized. First, a novel method for designing MFI optimal waveforms given an arbitrary waveform model is proposed and analyzed. Next, a transformed domain approach is proposed in which the estimation problem is redefined such that information is maximized about a linear transform of the original estimation parameters. Finally, informationally optimal waveform design is paired with informationally optimal estimation (receive processing) and are combined into a cognitive radar concept. Initial experimental results are shown and a proposal for continued research is presented.


Rachel Chang

Designing Pseudo-Random Staggered PRI Sequences

When & Where:


Nichols Hall, Room 246

Degree Type:

MS Thesis Defense

Committee Members:

Shannon Blunt, Chair
Chris Allen
James Stiles


Abstract

In uniform pulse-Doppler radar, there is a well known trade-off between unambiguous Doppler and unambiguous range. Pulse repetition interval (PRI) staggering, a technique that involves modulating the interpulse times, addresses this trade-space allowing for expansion of the unambiguous Doppler domain with little range swath incursion. Random PRI staggering provides additional diversity, but comes at the cost of increased Doppler sidelobes. Thus, careful PRI sequence design is required to avoid spurious sidelobe peaks that could result in false alarms.

In this thesis, two random PRI stagger models are defined and compared, and sidelobe peak mitigation is discussed. First, the co-array concept (borrowed from the intuitively related field of sparse array design in the spatial domain) is utilized to examine the effect of redundancy on sidelobe peaks for random PRI sequences. Then, a sidelobe peak suppression technique is introduced that involves a gradient-based optimization of the random PRI sequences, producing pseudo-random sequences that are shown to significantly reduce spurious Doppler sidelobes in both simulation and experimentally.


Fatima Al-Shaikhli

Fiber Property Characterization based on Electrostriction

When & Where:


Nichols Hall 250 | Gemini Room

Degree Type:

MS Thesis Defense

Committee Members:

Ron Hui, Chair
Shannon Blunt
Shima Fardad


Abstract

Electrostriction in an optical fiber is introduced by the interaction between the forward propagated optical signal and the acoustic standing waves in the radial direction resonating between the center of the core and the cladding circumference of the fiber. The response of electrostriction is dependent on fiber parameters, especially the mode field radius. A novel technique is demonstrated to characterize fiber properties by means of measuring their electrostriction response under intensity modulation. As the spectral envelope of electrostriction-induced propagation loss is anti-symmetrical, the signal-to-noise ratio can be significantly increased by subtracting the measured spectrum from its complex conjugate. It is shown that if the transversal field distribution of the fiber propagation mode is Gaussian, the envelope of the electrostriction-induced loss spectrum closely follows a Maxwellian distribution whose shape can be specified by a single parameter determined by the mode field radius. 


Venkata Nadha Reddy Karasani

Implementing Web Presence For The History Of Black Writing

When & Where:


LEEP2, Room 1415

Degree Type:

MS Thesis Defense

Committee Members:

Drew Davidson, Chair
Perry Alexander
Hossein Saiedian


Abstract

The Black Literature Network Project is a comprehensive initiative to disseminate literature knowledge to students, academics, and the general public. It encompasses four distinct portals, each featuring content created and curated by scholars in the field. These portals include the Novel Generator Machine, Literary Data Gallery, Multithreaded Literary Briefs, and Remarkable Receptions Podcast Series. My significant contribution to this project was creating a standalone website for the Current Archives and Collections Index that offers an easily searchable index of black-themed collections. Additionally, I was exclusively responsible for the complete development of the novel generator tool. This application provides customized book recommendations based on user preferences. As a part of the History of Black Writing (HBW) Program, I had the opportunity to customize an open-source annotation tool called Hypothesis. This customization allowed for its use on all websites related to the Black Literature Network Project by the end users. The Black Book Interactive Project (BBIP) collaborates with institutions and groups nationwide to promote access to Black-authored texts and digital publishing. Through BBIP, we plan to increase black literature’s visibility in digital humanities research.


Sohaib Kiani

Exploring Trustworthy Machine Learning from a Broader Perspective: Advancements and Insights

When & Where:


Nichols Hall 250 | Gemini Room

Degree Type:

PhD Dissertation Defense

Committee Members:

Bo Luo, Chair
Alex Bardas
Fengjun Li
Cuncong Zhong
Xuemin Tu

Abstract

Machine learning (ML) has transformed numerous domains, demonstrating exceptional performance in autonomous driving, medical diagnosis, and decision-making tasks. Nevertheless, ensuring the trustworthiness of ML models remains a persistent challenge, particularly with the emergence of new applications. The primary challenges in this context are the selection of an appropriate solution from a multitude of options, mitigating adversarial attacks, and advancing towards a unified solution that can be applied universally.

The thesis comprises three interconnected parts, all contributing to the overarching goal of improving trustworthiness in machine learning. Firstly, it introduces an automated machine learning (AutoML) framework that streamlines the training process, achieving optimum performance, and incorporating existing solutions for handling trustworthiness concerns. Secondly, it focuses on enhancing the robustness of machine learning models, particularly against adversarial attacks. A robust detector named "Argos" is introduced as a defense mechanism, leveraging the concept of two "souls" within adversarial instances to ensure robustness against unknown attacks. It incorporates the visually unchanged content representing the true label and the added invisible perturbation corresponding to the misclassified label. Thirdly, the thesis explores the realm of causal ML, which plays a fundamental role in assisting decision-makers and addressing challenges such as interpretability and fairness in traditional ML. By overcoming the difficulties posed by selective confounding in real-world scenarios, the proposed scheme utilizes dual-treatment samples and two-step procedures with counterfactual predictors to learn causal relationships from observed data. The effectiveness of the proposed scheme is supported by theoretical error bounds and empirical evidence using synthetic and real-world child placement data. By reducing the requirement for observed confounders, the applicability of causal ML is enhanced, contributing to the overall trustworthiness of machine learning systems.


Oluwanisola Ibikunle

DEEP LEARNING ALGORITHMS FOR RADAR ECHOGRAM LAYER TRACKING

When & Where:


Richard K. Moore Conference Room

Degree Type:

PhD Comprehensive Defense

Committee Members:

Shannon Blunt, Chair
Carl Leuschen
Jilu Li
James Stiles
Chris Depcik

Abstract

The accelerated melting of ice sheets in the polar regions of the world, specifically in Greenland and Antarctica, due to contemporary climate warming is contributing to global sea level rise. To understand and quantify this phenomenon, airborne radars have been deployed to create echogram images that map snow accumulation patterns in these regions. Using advanced radar systems developed by the Center for Remote Sensing and Integrated Systems (CReSIS), a significant amount (1.5 petabytes) of climate data has been collected. However, the process of extracting ice phenomenology information, such as accumulation rate, from the data is limited. This is because the radar echograms require tracking of the internal layers, a task that is still largely manual and time-consuming. Therefore, there is a need for automated tracking.

Machine learning and deep learning algorithms are well-suited for this problem given their near-human performance on optical images. Moreover, the significant overlap between classical radar signal processing and machine learning techniques suggests that fusion of concepts from both fields can lead to optimized solutions for the problem. However, supervised deep learning algorithms suffer the circular problem of first requiring large amounts of labeled data to train the models which do not exist currently.

In this work, we propose custom algorithms, including supervised, semi-supervised, and self-supervised approaches, to deal with the limited annotated data problem to achieve accurate tracking of radiostratigraphic layers in echograms. Firstly, we propose an iterative multi-class classification algorithm, called “Row Block,” which sequentially tracks internal layers from the top to the bottom of an echogram given the surface location. We aim to use the trained iterative model in an active learning paradigm to progressively increase the labeled dataset. We also investigate various deep learning semantic segmentation algorithms by casting the echogram layer tracking problem as a binary and multiclass classification problem. These require post-processing to create the desired vector-layer annotations, hence, we propose a custom connected-component algorithm as a post-processing routine. Additionally, we propose end-to-end algorithms that avoid the post-processing to directly create annotations as vectors. Furthermore, we propose semi-supervised algorithms using weakly-labeled annotations and unsupervised algorithms that can learn the latent distribution of echogram snow layers while reconstructing echogram images from a sparse embedding representation.

A concurrent objective of this work is to provide the deep learning and science community with a large fully-annotated dataset. To achieve this, we propose synchronizing radar data with outputs from a regional climate model to provide a dataset with overlapping measurements that can enhance the performance of the trained models.


Prashanthi Mallojula

On the Security of Mobile and Auto Companion Apps

When & Where:


Nichols Hall 246 | Executive Conference Room

Degree Type:

PhD Comprehensive Defense

Committee Members:

Bo Luo, Chair
Alex Bardas
Fengjun Li
Hongyang Sun
Huazhen Fang

Abstract

Today’s smartphone platforms have millions of applications, which not only access users’ private data but also information from the connected external services and IoT/CPS devices. Mobile application security involves protecting sensitive information and securing communication between the application and external services or devices. We focus on these two key aspects of mobile application security.

In the first part of this dissertation, we aim to ensure the security of user information collected by mobile apps. Mobile apps seek consent from users to approve various permissions to access sensitive information such as location and personal information. However, users often blindly accept permission requests and apps start to abuse this mechanism. As long as a permission is requested, the state-of-the-art security mechanisms will treat it as legitimate. We ask the question whether the permission requests are valid? We attempt to validate permission requests using statistical analysis on permission sets extracted from groups of functionally similar apps. We detected mobile applications with abusive permission access and measure the risk of information leaks through each mobile application.

Second, we propose to investigate the security of auto companion apps. Auto companion apps are mobile apps designed to remotely connect with cars to provide features such as diagnostics, navigation, entertainment, and safety alerts. However, this can lead to several security threats, for instance, onboard information of vehicles can be tracked or altered through a malicious app. We design a comprehensive security analysis framework on automotive companion apps all stages of communication and collaboration between vehicles and companion apps such as connection establishment, authentication, encryption, information storage, and Vehicle diagnostic and control command access. By conducting static and network traffic analysis of Android OBD apps, we identify a series of vulnerability scenarios. We further evaluate these vulnerabilities with vehicle-based testing and identify potential security threats associated with auto companion apps.


Michael Nieses

Trustworthy Measurements of a Linux Kernel and Layered Attestation via a Verified Microkernel

When & Where:


Nichols Hall, Room 246

Degree Type:

PhD Comprehensive Defense

Committee Members:

Perry Alexander, Chair
Drew Davidson
Matthew Moore
Cuncong Zhong
Corey Maley

Abstract

Layered attestation is a process by which one can establish trust in a remote party. It is a special case of attestation in which different layers of the attesting system are handled distinctly. This type of trust is desirable because a vast and growing number of people depend on networked devices to go about their daily lives. Current architectures for remote attestation are lacking in process isolation, which is evidenced by the existence of virtual machine escape exploits. This implies a deficiency of trustworthy ways to determine whether a networked Linux system has been exploited. The seL4 microkernel, uniquely in the world, has machine-checked proofs concerning process confidentiality and integrity. The seL4 microkernel is leveraged here to provide a verified level of software-based process isolation. When complemented with a comprehensive collection of measurements, this architecture can be trusted to report its own corruption. The architecture is described, implemented, and tested against a variety of exploits, which are detected using introspective measurement techniques.